Solution 8.9
(a) We start with the first-order time-dependent perturbation theory result for transition
probability
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which assumes that euh scattering process is an independent parallel channel and
where hiwg = (K~ E) .
Performing the integration we have
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and using the relation |eX - 1|2 = 4dsin(x/2) gives
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(b) The equation in (a) can be re-written as
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In the limit {— e we use 8(x)= =—lim ——=—. Setting x = (0 + ®)/2 for the
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first term on the right hand side and x = (w;- ®)/2 for the second term we have
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Now, wusing the fact that 0&(ax) = éﬁ(x) and letting a = 2h so that
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Since iy = (E;— E;) and the scattering rate is = = — we have
T

dt

2 n
L= SEWlcudbiv)

T
in which the first term corresponds to stimulated emission and the second term to
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absorption of a quanta of energy A .

Solution 8.10
(a) The induced transition rate is
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where (jlr|k) 1s the matrix element coupling the excited state to the ground state,
ho = AE = E,- E, = 10.2 ¢V is the energy of the transition, and
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1s the photon energy density per unit volume per unit frequency at thermal equilibrium.
The spontaneous transition rate is
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If the induced and spontaneous transition rates are equal, then
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and hence
_ ho _ 10.2
ksIn(2) 8617 x 107 x 0.693

(b) In the GaAs quantum dot the ground state energy is
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= 1.7x10° K

13.3 meV

and
hw = AE = E,-FE = 3xE = 40 meV

Because the dielectric medium has refractive index n, = 3.3 the photon energy density
1s modified to
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and, following the steps in (a), we obtain
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ho 0.040

= 129 K

keln(m +1)  8.617x 107 x 3.609
In our calculations we have assumed that the cavity does not have high O optical reso-

nances that could either enhance or suppress the emission rate. We also assume that
non radiative loss channels such as phonon scattering are not significant.



Solution 8.11

(a) The two-level atom described by Hamiltonian Hy has eigenstates |1) and |2) so
that
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and
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The energy separation is hw,, = E, - E;. The atom is initially in its ground state |1)
and at time £ = 0 it is illuminated with an electric field E = |EU|(em+ e in the x
direction. In this case the change in potential is W = —e|Eq|X(e+ e ™) and the new

Hamiltonian 1s
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(b) Substituting |x. § = al(t)eimltll)+az(l‘)eijmzf|2> into the time dependent
Schrédinger equation ihaith, b = Hx. & we have
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(¢) Multiplying both sides by (1| or (2| we obtain two equations
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where m,; = m;— ;. If |Eg| is small then the fast oscillating terms can be neglected
and the equations become
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Eliminating a; we get
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Initial conditions are a;(t=0) =1 and a,(t=0) =0 and we have

d —i —i
Eaz([= 0) = %al([= 0 W, = n W,
If ® = m,,, then
2
d Wy, Wy,
—az(t)+ az(t) = O
df 7’
. . W, t/h —iWy, t/h o ..
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the probability that the atom will be in state |2) at time >0 1s
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(d) When o 1s slightly detuned from ®,; we try solution a,({) = A’ + Be
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tion for a, gives
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and the probability 1s
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